Fundamental Issues of Lean Premixed H₂/air Combustion for Gas Turbine Development

Robert K. Cheng

Leader, Combustion Technologies Group Environmental Energy Technologies Div. Lawrence Berkeley National Laboratory Berkeley, CA

DOE/EPRI Workshop on H₂ Combustion in Gas Turbines, Mar. 22, 2007

Objective & Approach of LBNL DOE-FE Project

Objective

Explore the feasibility of the low-swirl combustion concept for lean premixed syngas and H₂ turbines

Approach

- Adapt low-swirl combustion for energetic H₂ fuels
 - Scale up nozzle design to larger sizes & throughputs
 - Optimize swirler for syngas and H₂ operation
 - Consider fuel-flexible options
- Address flashback and auto-ignition risks
 - Develop fuel injection and mixing strategies
 - Investigate turbulent flame speed and flashback mechanism

Current Status

- Developing a first-order analytical model for the turbulent flame brush position
 - Linking swirl number to flame position, flowfield features, turbulent flame speed, and turbulence
 - Foundation for assessing performance and guiding hardware design
- Investigated H₂/air flames at STP
 - Optimized LSI to operate with pure and diluted H₂ reactants
 - Requires a slightly lower swirl number than for hydrocarbons
 - Found linear turbulent flame speed correlation for H₂
- Testing with high H₂ fuels at NETL
 - Applied knowledge from laboratory studies in the prototype design
- Preparing tests with syngas and H₂ at Georgia Tech
- Initiated collaboration with Siemens Power Generation

Scientific Foundation Needed for Hardware Development

- Basic understanding of the overall flame and flowfield behaviors at turbine conditions
 - Validate first-order analytical model and establish engineering guidelines for H₂ and syngases
 - Limited knowledge of LSC compared to the wealth of information on high-swirl combustion
 - Gain physical insights to address system integration issues and reduce design iterations
- Detail characteristics of laminar and turbulent flames
 - Develop turbulent flame model for lean premixed syngas and H₂
 - Characterizing fuel effects on local heat release
 - Support development of predictive computational tools
 - High fidelity numerical simulations with detail chemistry that capture the entire flowfield, the flame, and its emissions
 - Limited capability of RANS CFD due to its averaged nature
 - Standard LES based on typical flame models not applicable

Low-Swirl Burner Is An Effective Tool to Address Fundamental Issues

LBNL/Lund/Darmstadt LSB for fundamental premixed turbulent flame studies

- Provides a close approximation of a locally planar 1D premixed turbulent flame
 - Adopted by researchers world-wide
- Laboratory data directly relevant to gas turbine development
 - Research burners and gas turbine hardware have the same configuration
 - Laboratory flame properties and behaviors similar to those observed at turbine conditions
 - Better understanding of this link will greatly facilitate development for H₂ turbines

Fundamental Issues For LSC Development

- Ignition delay
- Combustion dynamics
- LSC flowfield evolution with velocity, temperature & pressure
- Turbulent flame speed
- Properties of lean laminar syngas and H₂ flames
- Chemical kinetics (molecular transport and rate coefficients) of lean H₂ and syngas systems
- Heat release models for H₂ and syngas turbulent premixed flames at relevant turbine conditions
- NO_x formation
- Turbulence models for swirling flows
- Computational methods for turbulent reacting flows

Issues Being Addressed by Current Project

Laboratory Experiments on Premixed H₂ Flames

Lean premixed H_2 /air flame at $\phi = 0.35 \& U_0 = 20 \text{ m/s}$ captured by an IR camera

- Provide basic knowledge to configure LSC for H₂ turbine
- Studied flames burning with pure H₂ and H₂ diluted with 25% and 50% N₂ dilution (by volume)
 - Conditions with T_{ad}= 13800, 1320, 1200 K
- Varied swirl number from 0.57 < S < 0.41
 - Varied the blockage ratio and geometric pattern of the center plate
- Measured lean blow-out and flowfield characteristics at 9 < U₀ < 20 m/s
- Found optimum configuration for H₂
- PIV measures S_T and other flowfield characteristics

Turbulent Flame Speed Central to the Low-swirl Combustion Concept

- Lifted flame exemplifies propagating nature of premixed combustion
- Correlation of turbulent flame speed, S_T, with turbulence intensity provides empirical constant for the LSC analytical model
- 4 different ways to define turbulent flame and each has its own specific meaning:
 - 1. Local displacement flame speed most relevant to LSC
 - 2. Averaged displacement flame speed bomb experiments
 - 3. Local consumption flame speed
 - 4. Averaged consumption flame speed conical flames
 - ► Comparison and interpretation of S_T from different definitions are counter-productive
- Local turbulent displacement flame speed at the axis most important to LSC
 - Flame speed at the stabilization point and flashback origin
 - Laboratory measurements and correlation of S_T give insights into flashback, fuel effects, and assist the design of fuel-flexible swirlers and injectors
 - Lacking data at turbine conditions

S_T of H₂ Flames Show Linear Correlation

Implication of S_T Correlation

- Local turbulent displacement flame speeds measured in low-swirl combustion systems are significant higher than the averaged displacement flame speeds measured in non-stationary flames and the averaged consumption flame speed measured in stationary flames
 - Averaged flame speed inadequate for assessing flashback risks
 - Local flame speed at the flashback origin is most useful
- 50% difference in H₂ and CH₄ turbulent displacement flame despite significant difference in laminar flame speed
 - Correlation equations show contribution from laminar flame speed becoming insignificant at high u'

Need H₂ Turbulent Flame Speed Correlation at Relevant Gas Turbine Conditions

- Significant experimental challenges for laser anemometry measurements in high-pressure flow channels
 - Transmitting laser and scattered signal through windows reduces signal to noise
 - Operational difficulties associated with cleanup of fine particles deposited on windows
- University and National Lab researchers rising to this challenge
 - Overall trend can be inferred by observing LSI H₂ flames at high T and P
 - Detailed measurements at selected data points for quantitative comparison with results from STP laboratory experiments

Open Issues

Limited Data Available For Lean H₂ Laminar Flame Speeds

- Laminar H_2 /air premixed flames are inherently unstable for ϕ < 0.7 due to thermo-diffusive Instability
 - Cellular flame structures studied experimentally and theoretically
- Instability affects measurements of laminar flame speed S₁
 - Bomb experiments requires corrections to obtain un-stretched laminar flame speed
 - Counterflow burner generates positive stress to suppress thermo-diffusive instability
- Chemical kinetics schemes for lean H₂/air flames under predict measured S₁
 - ► Huge scatter in predicted S₁ of lean H₂ flames
 - Rate constants for third body reactions and molecular transport coefficients need further studies
- Large uncertainties exist for a basic property needed to analyze LSC flame processes
 - Affects the accuracy of the S_T correlation coefficient but not its linearity

Reaction Front Instability Affecting H₂/Air Turbulent Premixed Flame

- Turbulence produces both positive and negative stretch
 - Suppression and promotion of reaction front instability control how H₂ flames respond to turbulence
 - Variations in reaction front structures and its wrinkle topology dictate local heat release rates and it spatial distribution
- Pressure increases thermo-diffusive instability
 - Coupling of pressure & turbulence effects remains unexplored
- Turbulence time scales can be much faster than preferential transport time scales
 - Can high turbulence suppress thermo-diffusive instabilities?
- Significant implication on turbulent flame model
 - Stretched laminar flamelet model cannot be applied to lean H₂ turbulent flames

Understanding and Characterizing Lean H₂/Air Premixed Turbulent Flames

Research Need

- Evolution of preferential diffusion effects with turbulence intensity, temperature and pressure
- Development of heat release model for LES and CFD

- Coordinated experimental and computational investigations of premixed turbulent flame structures
 - Preliminary results obtained from OH-PLIF measurement and 3D time dependent simulation of H₂/air flames in LSB
 - Wrinkle topology is drastically different than those of hydrocarbon flames
 - Non-uniform heat release with significant enhancement and local extinction due to thermo-diffusive instability are evident on the experimental and computational results

Characterizing H₂/Air Reaction Zone Structures

Research Needs

- Understand the different responses to positive and negative stretch
 - Only positively stretched laminar flames have been studied
 - Very limited knowledge on negatively stretched flame with local extinction
- Improve species transport in chemical kinetic scheme

- Controlled 2D oscillating laminar flame experiment generating regular and stationary flame wrinkles for detailed interrogation by laser methods
 - Stationary flame wrinkle structures amenable to diagnostics
 - Ideal for low Mach Number simulation with adaptive mesh refinement
- Test bed for studying effects of preferential diffusion on unsteady flame characteristics and chemistry/turbulence interactions
 - 2D flowfield reduces experimental ambiguities for direct comparison with simulations

Predicting NO_x Emissions at Turbine Conditions

Research Need

- NO_x emissions difficult to predict
 - Temperature and pressure dependencies of N₂ chemistry
 - Log linear dependence of LSC NO_x on T_{ad} regardless of fuel, T and P
 - Why does this dependency exists?
 - When does this dependency breakdown?

- Need improved understanding of NO_x formation in ultra-lean flames and the influence of the flowrfield
- Experimental and computational study to obtain a scientific underpinning
 - Comparing NO_x contours in high-swirl and low-swirl combustors
 - Correlate recirculation zone strength with NOx concentrations
 - Compute NO_x dependency on residence time at STP and at high T and P

Combustion Dynamics

Research Needs

- Response of LSC to external excitations
 - Lifted flame and absence of strong recirculation affect the responses
 - LSI in T70 engine shows different acoustic signature
 - Acceptable pressure fluctuations at frequencies different than SoLoNOx high-swirl injectors

- Side-by-side comparison of low-swirl combustion and high-swirl combustion subjected to the same acoustic forcing and fuel/air fluctuations
 - Fresh insights to understand combustion dynamics
 - Model for LSC oscillations
 - Collaboration with Universities and National Laboratories researchers

Merging Measurements, Chemistry, Models & Simulation

Research Need

Computational tools to predict LSC flame and flowfield properties and their coupling with combustor geometries

- Establish a benchmark experimental and computational configuration
 - Side-by-side comparison of low-swirl and high-swirl combustion in a gas turbine simulator with well-defined boundary conditions
- Promote cooperation among experimentalists, computational scientists and tool developers
 - Evaluate capabilities and weaknesses of RANS, LES, LMC and DNS
 - Define experimental configuration with well defined input, side and exit boundaries
 - Obtain benchmark data to calibrate and improve the computational methods
 - Develop robust flame and turbulence models
- Improve predictive capability for LSC including flame volume and flame chamber interaction

Summary

- Principle of LSC is described by a top level model that can be used to guide its scale-up for large utility turbines
 - Laboratory experiments are being performed to provide empirical inputs for hydrocarbons, syngas and hydrogen
- Development for syngas and H₂ turbines requires basic knowledge on the combustion properties of lean syngas and H₂ flames
 - Well-designed experiments and coordinated theoretical and numerical studies are critical to provide new insights on both laminar and turbulent premixed flames
 - Reaction zone structures and wrinkle topology of turbulent flames
 - Positively and negatively stretched laminar flames
 - Coordinate and merge knowledge from University and Nat'l Lab researchers
 - Ignition delay and combustion dynamics studies
 - Benchmark experiments at gas turbine conditions
 - Computational model for LSC
 - Share results with OEMs and vendors

